Systems Biology in a Computational
Toxicology Framework

@ Simulation Models - Dose & Response
PBPK - dose metfrics/MOA
PBPD - toxicity = f(dose metric)
BBDR - 'models’ of biology

@ Systems Biology - Needs to be more
clearly defined in document
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Toxicity is a Biological Perturbation
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Signaling Networks & Biological Gircuits

(Hanahan and Weinberg, 2000)

Level of Detail

* The entire cell - not anytime soon

* Signaling pathways - generically already

+ With toxic perturbations - depending on
data acquisition strategies, doable with
genomic technologies - microarrays,
siRNA and overexpression approaches




Systems Biology

- Are systems biology models the natural
descendants of BBDR models - yes!

- Does the development of
systems/computational biology models reflect
new structures for thinking about toxicity
cascades-yes

- Ts there sufficient biological data to develop

these models as central portions of toxicity
assessments- not yet, but soon




Systems biology in relation to the US EPA plan for computational toxicology

Comments by Melvin Andersen: September 12, 2003, Washington, DC at the EPA
Science Advisory Board Consultation on the document, “A Framework for a
Computational Toxicology Research Program in ORD”, EPA/600/R-03/065, July
2003.

Comments accompanying the short powerpoint presentation: Systems Biology in a
Computational Toxicology Framework provided at the meeting by Melvin
Andersen, CIIT Centers for Health Research.

The computational toxicology frame work document discusses applications of a variety
of computational tools that are employed in toxicology & risk assessment. These tools
include models for exposure assessment, for predicting properties of new compounds by
quantitative structure activity relationships, and for predicting dosimetry/exposures based
on physiological & biological principles. The input into these models increasingly
includes new data developed with modern techniques of molecular and cellular biology,
i.e., the full range of contemporary ‘omics’ information. A large challenge in
computational methods is related to meshing these more mature modeling technologies
and the ‘omics’ data. The situation with ‘systems biology’ is somewhat different in that
here we talk about a rapidly evolving discipline, the systems biology, and the manner in
which the rapidly evolving computational aspects of systems biology may affect
strategies for toxicity evaluations and risk assessments in the immediate future and the
longer term. The definition of systems biology in the framework document is nicely
done. There is less detail on how this broad field will be narrowed to ‘computational
systems biology’ in relation to the overall thrust in computational toxicology. Many of
the points noted in my comments relate to the implementation of a computational systems
biology focus that will help organize toxicology research on pathways of toxicity and the
application of these computational systems biology modeling structures for risk
assessment.

The goal of systems biology is to understand how the organization of various biological
components leads to cellular structure, organ function and health of the intact organism.
Computational biology is an associated discipline involved in developing computational
simulation models of these biological pathways and how they are perturbed by genetic
differences, stressors, and exogenous compounds. In toxicology, we want to know how
these pathways are perturbed and at what doses the perturbations become significant.
Simulation models (Slide 1) have been applied in various aspects of toxicology, including
exposure modeling. Biological processes are simulated in physiologically based
pharmacokinetic (PBPK) models, in physiologically based pharmacodynamic models
(PBPD) and in biologically based dose response (BBDR) models. PBPK models have
been extensively utilized in the past 15 years as an integral component of many risk
assessments to estimate doses in tissues (Figurel ). PBPD models are intended to
evaluate the functional relationships between the intensity of dose and biological
outcome. BBDR, ideally, provide a full representation of the biology involved in a toxic



outcome, the relationship of dose to response, and the mechanistic basis of extrapolation.
As noted, we still do not have any example of a complete BBDR model.

Computational simulation models of cellular signaling networks/circuits are now under
rapid development as the structure of these networks become elaborated by functional
genomic strategies with high coverage, high throughput methods. These models really
are the equivalent of BBDR models for biological function and perturbations by toxic
compounds. Computational approaches to systems biology will likely give the first real
opportunity for creating credible BBDR models that predict the mechanistic basis of dose
response curves based on toxicity pathways. This opportunity and direction of
computational toxicology is absent from framework document and would be a valuable
addition. (I can provide citations to pertinent work in computational biology if needed.)

A systems biology approach, with computational biology emphasis, requires some
rethinking of aspects of toxicology to a more integrative biology-based construct. The
framework shows a linear sequence of events from source through response (Figure 2).
In this diagram, PBPK models serve several purposes — they can estimate dose for
various exposure scenarios or alternatively calculate exposures based on measurements of
biomarkers (Figure 3). Some progress in biologically based dose response modeling has
occurred with two-stage clonal growth models for cancer — such as the MVK
(Moolgavkar, Venzon and Knudson) model (Figure 4). In general, these cancer models
have utilized composite transition rates for mutations and proliferation without providing
much biological detail of these cellular processes. A major contribution of these
modeling efforts with the MVK has been emphasis on perturbations and on the normal,
background rates in unexposed animals. Some PBPK models, such as those for acetone
or ethylene oxide, also have to account for background processes in normal, unexposed
animals. Other PBPK models have been developed for endogenous signaling
compounds, including thyroid hormones or estradiol. Dose response models increasingly
need to account for exogenous compounds and for the perturbation in dosages of proteins
(proteomic technologies) and small molecules (metabonomic technologies) in health and
in toxicity.

The paradigm in Figure 2, the linear representation of source to toxic response is a
structure that emphasizes toxicity as a fundamental property of a compound. A more
consistent representation would emphasize the biology of the normal situation and the
perturbation of cell circuitry/signaling associated with adverse responses (Figure 5).
Exposures to toxic compounds then become a perturbation in specific biological
pathways and these disruptions when sufficiently great lead to toxicity. Toxicity should
be represented as two parallel processes (Figure 6) with a sequence from exposure
through active tissue dose to another with the normal biology and the affected pathway of
toxicity.

These pathways for most toxicity will likely be associated with cell signaling and cell
adaptive pathways (Figure7). These pathways associated with human cancer were
discussed by Hanahan and Weinberg (Cell, 100, 57-70, 2000). Computational
approaches in systems biology map these pathways, develop simulation models of the



pathways, and assess the impact of perturbations in pathway constituents on function. It
appears likely to this commenter that these computational biology approaches, based on
new genomic tools and simulation technologies, will be the essential component of the
simulation portion of any long term effort in modern computational toxicology and
biologically motivated risk assessments. In this way, they will become important
components of any computational toxicology program a well.

An important question is in relation to implementation of any systems
biology/computational biology program is feasibility of creating accurate simulation
models that recapitulate biology and predict dose-response for perturbations with high
fidelity (Slide 8). Can this be done? Presently, the goal of modeling entire cellular
networks remains remote although the rapid accumulation of biological data and
consortia working on prokaryotic cells and the Alliance for Cellular Signaling with their
emphasis on a set of 4 mammalian cell types should accelerate progress on these more
expansive levels. However, great progress has been made in developing experimental
and simulation tools for modeling more limited cell signaling networks. With toxicity
perturbations, we now have tools for high throughput, high gene coverage evaluation of
cellular and tissue responses. These tools will include high density micro-array
technologies coupled with functional assays of gene network/toxicity pathways using
knock-down and knock-in methods with, respectively, inhibitory RNA screens and over
expression of full length gene transcripts in target cells. These results permit network
mapping of the biology and simulation tools that should become a part of the
computational toxicology initiative are used to create the biologically based dose
response-perturbation models that will be used in chemical risk assessment.

Summary: The framework provides a good definition of systems biology while falling a
bit short in giving a clear sense of how computational approaches in this venue will alter
toxicity testing or risk assessment. This technology is still developing. A path forward to
using these approaches would have to couple the systems biology approach with the real
advances in simulation modeling of biological processes to develop close connections
between new ‘omic’ technologies, computational biology, and toxic perturbations of
biological targets related to signaling networks/circuits. The combination of these
technologies for the first time will make BBDR models feasible (Slide 9). My opinion is
that systems biology needs to be more clearly identified as the natural descendant of early
attempts to create BBDR models and may finally provide tools to fulfill the promise of
BBDR methods — prediction of the shape of dose response curves from biological
principles. In a systems biology context there is a need to put the biology first and the
perturbation as an overlay on the biology and to emphasize the computational biology as
much as the systems biology aspects of the program.



Computational models

BBDR
PBPK
QSAR

Mathematical Biology (DWD discussion points)

- Lack of microbiological risk assessment (MRA) approaches.
There could be more discussion of MRAs in sections 11.A .4,
II.A.6, and II.C.1. These MRAs have similar toxic endpoints
as discussed in the CTF and some of these endpoints are
definable with the “omic” technologies.

- There needs to be more discussion of how the model
verification (is the model correct?, benchmarking as
discussed before) will be handled. Also, as part of
benchmarking, sensitivity analysis is crucial. How will the
models be tested for sensitivity analysis of the parameters
(again, benchmarking). Also, with validation (is the model a
valid model of the real system?) of these modeling
constructs—this CTF is a new approach so is the approach
valid?

- Uncertainty analysis (variability) more than quantifying the
uncertainty in higher order systems (p. 24). Uncertainty in
what the outliers are, how do we quantify biological data?
By using probabilistic models and statistical tools that help
put bounds on these uncertainties. How will the CTF handle
the uncertainty of how different sub-populations respond to
toxins (chem., micro)? How do we quantify the total system
(systems biology) within a context of uncertainty?

- How will ORD handle systems level models (such as
Entelos, Inc.’s “patient model”) as it moves towards a
systems biology approach? A more global view of the
systems biology.

- Will the software tools allow sharing of information through
a common platform (like the web)? How will that be handled



as part of the ORD? (Since the ORD is a research
organization and these computer (both hardware and software
tools) are more of a development function.

- How will the modeling frameworks be developed so that all
researchers can access the data in a form that it is useful to
further the development of more detailed models?

Suggest priorities of research needs:

a. Develop the framework for the systems biology better
in much more detail.

b. Develop systems tools (db, computer tools) to manage
the information that will be gathered as part of the CTF.
This is a crucial element to allow the information to be
used properly. Data mining will be crucial. (p. 24
paragraph is not enough)

c. Determine the statistical suite of tools that will be used
to glean information for the modeling efforts



Dose Metrics
Clifford Weisel, Ph.D.

As indicated in the framework, dose metrics describes the relationship between dose and
response and is a necessary component for developing a computational toxicology model and to
improve risk assessment.

PBPK models are major tools for dose metrics. PBPK models require both physiological data
and metabolism data.

As indicated in the framework document, physiological data are known for humans and many
other species. However, it is important to recognize which data to use for the population being
the model and not rely solely on default values. For example, two groups potentially susceptible
to many environmental contaminants, children and pregnant women, have the physiological
values (i.e. blood flow, weight, body fat etc.) that differ from the average adult. Different
physiological values may also be important for specific ethnic groups or groups with
compromised health, such as asthmatics when studying lung capacity and the effects of air
pollution. Further, distributions of values exist, rather than single point values, and
implementation of the models using distributions should be considered.

The required metabolic data are chemical and species specific. Again, a distribution of values
exists within a population, not only due to polymorphisms which may result in multi-modal
distributions but around a mean value for each mode because of induction and suppression of
enzyme activities due to previous exposures to the target compound and/or co-exposures to the
agent that are metabolized by the same enzymes and inherent inter-individual differences. Some
of the variability in metabolism may be reflected in the phenotype, not just genotype of
individuals. This type of variability has been observed for pharmaceuticals agents when judging
the effectiveness of a drug and appropriate dose to be administered to an individual. The issue of
mixtures is also relevant to metabolism rate as portions of different metabolic pathway may
overlap.

The metabolic rate may also varies with age, health and activity pattern (such as nutritional
status) in addition to polymorphism and enzyme induction/suppression. For example, the
enzyme levels of a developing infant is not the same for all enzymes as an adult.

The magnitude of the dose can alter the metabolic pathway. The extrapolation across species for
ecological risk assessment and to humans needs to be considered in evaluating the dose metric.
The ability to examine alterations in gene, protein and metabolite expression at lower doses than
the classic animal studies may be helpful for modeling the dose associated with environment
exposures.

The potential to use gene expression, protein profiles and metabolite profiles as biomarkers to
determine the dose metrics, the biological mechanisms or metabolic pathways necessary as input
for or to validate a computational model are strong components of the proposed approach.
However, the best biomarkers are those that are both specific and selective for the agent being
considered. This will not be the case when looking at only a small number of genes, proteins or



metabolite profiles since many compounds individuals are exposed to may affect the same
pathways and therefore elicit similar biological responses. The lack of specificity and selectivity
of genes, proteins or endogenous metabolites as biomarkers may be overcome by looking at large
numbers of responses and appropriate statistical analyses to examine the pattern of the responses.
The response across the biomarkers (genes to proteins to metabolites) may also be different. This
may be a strength as it may provide information on the biological progression of the exposure
leading to a disease, again for both the model development and validation.

The biomarkers indicated above may also be useful in understanding exposure to mixtures and
whether the components act in an additive, synergistic or antagonistic manner by examining the
extent of responses along the continuum for different mixtures and individual agents.
Computational toxicology of mixtures at low levels may be an important area in this field that
EPA could fill.

Much of the above is best done in conjunction with NIEHS, which has major programs studying
metabolism and genomic control of specific chemical agents.

Consideration should be given to methods to validate the dose metrics calculated by the model
for different biomarkers, such as the use controlled exposure studies, for which EPA has
excellent experimental facilities, and field measurements in the population.

One shortcoming in the framework that is related to dose metrics is the lack of a recognition of
exposure modeling, as opposed to fate and transformation modeling. Exposure modeling is
critical in determining the dose associated with a particular concentration of an agent in an
environmental medium or emission. Exposure modeling accounts for the interface between
movement and activity of people and the location of contaminants. It is important in
understanding potentially susceptible populations who may have higher or lower exposures, and
therefore doses, to environmental contaminants than the general population. Simple examples
include: children spend more time and are more active outdoors than adults so may be exposed to
higher levels of ambient air pollutants; showering and bathing habits vary with gender, age and
culture altering the exposure to water contaminants; and the dose delivered to the lung and the
size distribution of particles delivered differ with level of physical exertion. The true exposure
needs to be considered in calculating the dose for specific target populations from emissions and
not just the resulting environmental concentration. Similar consideration in considering
exposures within ecosystems are necessary. This is recognized in the framework document when
discussing cross species comparisons and it is noted that the Florida panther is at greater risk for
exposure to bioaccumulating contaminants because of the trophic level it feeds on. Exposure
models exist, though fundamental data on activity patterns of specific subgroups of interest may
still be needed. The same issues of uncertainty analyses and efforts to estimate distributions
using estimation routines to reduce computational effort in order to obtain population exposure
distributions exist for exposure modeling as discussed and alluded to for other aspects of the
computational modeling effort.

The route of exposure: inhalation, dermal absorption and ingestion, may also be important in
consideration of the dose and potential metabolism. These can be modeled and differences in



exposure routes can occur across populations. The breathing rate, skin surface area and ingestion
amount (and food types) eaten vary between children and adults and discussions of these
differences should be addressed in framework document.

An additional issue that should be addressed, though not necessarily within the Dose Metrics
section, is the use of computational modeling to predict which biomarkers may be most
appropriate to evaluate the effectiveness of regulations implemented by EPA. These biomarkers
should reflect the exposure-response (dose metric) association and be on the biological
continuum towards a disease endpoint. The current Risk Assessment paradigms that identify a
potential Public Health or Ecological Health problem are coupled with Risk Management steps
to reduce the risk and improve Public or Ecological Health. Predicting through a computational
model and documenting a reduction in a biomarker that represents an actual biological response,
sometimes called a Health Based Indicator, would improve the understanding of the effectiveness
of the regulations and better document the Risk Assessment complementing the current emphasis
on measuring decreases in environmental levels.



Key Observations re. ERA

Pat Billig, Charles Pittinger
SAB Panel on Computational Toxicology
9-12-03

- Definition of Computational toxicology — “mathematical and
computational models for prediction of effect an
understanding of mechanism” — may not capture full scope of
goals and programs presented later, e.g., fate, transport and
exposure assessment

— Expand definition, ohr mighta para’}lel “computational risk
pt be

«  How will ORD link “scales” in future research?
— Scales of biological organization: cell, tissue, organ, on:gan
system, or pop s y ?
~ Temporal and spatial scales?
ould r species, endpoints, i
established to ensure cri parisons among
programs in EPA and other federal agencies?

Key Observations

+ At what scales do we know the most? The
least?

+ Are certain chemical references better suited to
one scale or another?

* In 20 years, will one be able to trace

computational tox. results for even one

chemical? One species?

What are the common chemical, species,

endpoint, MOA being studied today? Are they

addressed in comp. tox. programs?

Key Observations

« “Sources” not represented in figure 1.

— Sources-effects studies are primarily linked to single level
of biol organization (cell...ecosystem). Can a source be
studied across all levels?

* Focus of Framework is the “omics” research, with
less emphasis on conventional QSARs in broad use
today (EPISUITE, EFAST, ECOSAR). How will these
be supported, updated, maintained? Who has the
lead, OI;(D or the Program Offices?

- Significance of the end result? “So what?”

— How will comp. tox. improve decision-making?

— How will comp. tox. Improve regulatory guidelines?
Compliance monitoring?

EPI-Suite™ (WSKOWWIN) Predictions of Solubility
Versus Measured Values

Data from Group 1 chemicals; Group 2 chemicals yielded similar
results.

Predicted Solubility {log mgit}

N

Measuresd Solupility {log mgil.}




Results of BIOWIN Predictions of
Chemical Biodegradation Rates
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Key Observations

= Significance questions:

— Are compensatory mechanisms being evaluated in
cellular studies? Can a gene or a protein alter an
ecosystem?

— What will a “red light” in a proteomics study trigger in
regulatory action? Is it sufficient in itself?

— What are criteria for applying “omics”? Weight of
evidence? Sound science? Peer review? Guidelines
for QA/QC?

— What uncertainties are acceptable? How are
probabilistic distributions accounted for?

Charge Questions:

« 1. Soundness.

— Contributions of QSAR, fate and transport,
physical-chemical properties not apparent up
front.

« 2. Scope.

— Scales could be better addressed. Biological
organization, evolution, spatial, temporal,
ecoregional...

Charge Questions:

» 3. Recommendations.

— Can “threads” be established that will link all
scales over the next 20 years? (chemical
references, species, endpoints, receptors...)

* 4. Priorities.

— Should human health and ecological
measures and endpoints be distinguished in
comp. tox?

— Cross-species, mixtures, uncertainty.




Comparison of TOPKAT Predictions for
Chemicals with Multiple Measured LOAEL
Values

Measured values from rat bioassays >90-days; chemicals ordered from most
to least toxic by TOPKAT prediction; predictions with error codes excluded.
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Charge Questions:

+ 5. Partnerships.

— Examples appear anecdotal — is there are systematic
process for multi-stakeholder consultation (beyond
EDSTAC)? If not, should there be?

— Define the players. Who's at stake? Who are the
thought-leaders?

— Levels of partnerships: community, city, state, region,
nation, OECD, UN, private sector.

— Possibilities: Focus groups. Expert panel (NAS,
SETAC), Surveys, Delphi process...

Charge Questions:

» 6. Process.

— How to connect interests and programs in
NERL, NCEA, NHEERL, NCER, etc?

— How to collaborate ORD programs with urgent
needs in OW, OPPT, OAQPS, OSWER...?

—How to link across fed. Agencies: role of
OSTP?

—Links internationally? With states?
—What is EPA’s role in comp. tox? NSF's?




Framework for a computational
toxicology research program in ORD
12 September 2003

Proof of concept: Endocrine
Disrupting Chemicals

Proof of concept: Endocrine Disrupting
Chemicals

= Receptor bindingmodels
+ In vitro models —H295 cell line for steroidogenesis
» Toxicity pathway characterizations

— Thyroid gland functioning
— CNS integration

Proof of concept: Endocrine Disrupting
Chemicals (EDC)

« Important and valuable plan:
— EPA needs to continue to be legitimate player
in development and application of new tools
— EDC reasonable choice for ‘proof of concept’.

+ Builds oncurrent EPA ORD leadership in
understanding EDCs.

+ New tools appropriate for EDC biology.
+ Can help understand significance of EDC issue.

Proof of concept: Endocrine Disrupting
Chemicals (EDC)

* General concerns:

— Care with communication of results

— Validation — needs to be 100% coordinated
with EPA’s OSCP EDMVS validation efforts

— Dose response

— Biologic response vs. adverse effects

— Acknowledge limitations




Proof of concept: Endocrine Disrupting
Chemicals (EDC)
Specific comments:

» Receptor binding models
— Supportive for priority setting/reduce animal use — is
ORD following the ICCVAM review recommendations?
* In vitro models
— Validation, including limited in vivo program
« Toxic pathway characterizations

— Dose response important — particularly at low end - the
key event used as a point of departure must have a
necessary and sufficient causal relationship to an adverse
effect




EPA Computational Toxicology Framework Consultation - D. W. Donahue
Charge questions:

1. T feel that the document does a very good job of identifying the issues that
comprise the CTF mission. The CTF is thorough in the state-of-the-art and is
well planned out as to the next steps that are critical.

2. I feel that the scope is well defined. However, there are some notable issues of
review:

a. However, I think more emphasis should be more on the conceptual
systems biology models. There has been a fair amount of work on the
human systems models as part of the clinical trials program that the FDA
has with drugs. I think this work could be capitalized on by the ORD.

b. Use of probabilistic transformation/metabolism models (see page 15, last
paragraph) (such as MRA) would enhance the filling the data gaps
mentioned here. Also, there are some private firms (Entelos, Inc.,) that
have been doing work on systems models that could be used by the ORD
for modeling, as well as ORD sponsoring some further work.

c. In section II.A. parts 3&4, the case is really understated for the need of
simulation and modeling tools development.

d. The issue of defining and characterizing sub-populations is a very
significant one as we have found out in the food safety arena. Not sure the
best approach here but this cannot be overlooked in further developing
models and technologies.

e. Section II.A.4., Is there any way to piggy back on what is known from
FDA trials (such as clinical trials) that can be built upon. Some type of
similitude type studies.

f. In Figure 2, it should be included that sickness (acute, chronic) in the
individual responses box.

g. Page 20. Again there might be some linkages with drug trials here.

h. In section I.A. parts 5&6, more details need to be given as to what
particular statistical tools will be used and developed for use. I can see a
place for PLS, PCR and neural networks modeling tools for the type of
data that are mentioned.

1. In section II.A.6., how will be systems biology section be structured? Will
the ORD use the NIH or NSF models for a structure? This needs to be
laid out in some detail as this an important focal point to integrate all the
research being done in this area. The NIH and NSF models are useful in
their context, but the EPA-ORD might consider variations of these to fit
its needs.

j. Insection II. A.7., the development of modeling frameworks and
uncertainty analysis is a crucial element in the process. The creation of
web-friendly database tools is essential for the CTF if sharing of data is
important. If these tools are not developed in such a way that they are
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k.

p.
q. P.30,2™ paragraph. Why rely on BBDR models if you mentioned their

I

expandable as future technologies are made available, they will become
archaic and not used. Significant resources should be directed toward this
effort.

Interactions with such other governmental organizations as NSF, NIH, and
private entities such as JAX Laboratories, Entelos, Inc. will be beneficial
as the systems biology component is formulated.

Need a better definition of what “development of uncertainty analysis
methods” (p. 24) means. It seems this concept was lumped into the same
area as high performance computing and uncertainty analysis methods are
more software tools and not hardware specific. Who will have access to
the supercomputer resources and how?

. In section I1.B.2., the final impact should be measured by setting Public

Health Objectives (see IOM, 2003, for reference) as part of the modeling
effort. In this manner, there is an end point that can be focused upon as
methods (such as QSARs, etc) are designed/implemented/evaluated.
Section II.C.1 (p. 27). Need to examine the NIH & NSF concepts of
“systems biology” to move into concert with other governmental entities.
Section II1.C.2. Modeling of the increased sensitivity to low
dosages/exposures is a very important step. The population seems to
becoming more sensitive to lower exposures than in earlier history (e.g.,
asthma, pollens, dust, etc.)

P.29. Why are these BBDR models developed to be so complex?

limits earlier on prev. page?
Section II.C.2.c. (chemical mixtures). This section seems to be weak and
not well-focused.

(see #2 above)
Suggest priorities of research needs:

a.

b.

Develop the framework for the systems biology better in much more
detail.

Develop systems tools (db, computer tools) to manage the information that
will be gathered as part of the CTF. This is a crucial element to allow the
information to be used properly.

Determine the statistical tools suite that will be used to glean information
for the modeling efforts

Outside organizations, current activities.

a.

b.

How about NIH, DoD work, etc.
CDC collaborations

Adequacy of the process of development in section I.

Additional actions required to improve the CTF as outlined herein?

a.
b.

More consideration to the tools to be used in CT should be a priority.
More focus on the smaller steps to better build the systems biology
approach stronger
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